Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
modular:02_gcd [2014/01/31 11:41]
marje
modular:02_gcd [2014/01/31 19:15]
marje
Line 92: Line 92:
 The **least common multiple** of a set of numbers $\{a_1, a_2, \dots , a_n\}$ ​ is denoted $$\operatorname{lcm}(a_1,​ a_2, \dots , a_n ).$$ The **least common multiple** of a set of numbers $\{a_1, a_2, \dots , a_n\}$ ​ is denoted $$\operatorname{lcm}(a_1,​ a_2, \dots , a_n ).$$
 It is a number $x$ such that It is a number $x$ such that
-  * $a_i \mid x$ for all $i$, i.e., $x$ is a **common multiple** of $\{a_1, a_2,\dots , a_n\}$),+  * $a_i \mid x$ for all $i$, i.e., $x$ is a **common multiple** of $\{a_1, a_2,\dots , a_n\}$,
   * $x \mid y$ for any other common multiple $y$ of $\{a_1, a_2, \dots ,  a_n  \}$.   * $x \mid y$ for any other common multiple $y$ of $\{a_1, a_2, \dots ,  a_n  \}$.
 </​box>​ </​box>​
Line 109: Line 109:
 </​WRAP>​ </​WRAP>​
  
-Clearly $\min(e_i, e'_i) +\max(e_i, e'​_i)=e_i+e'​_1$ (for example, $\min\{4,​10\}+\max\{4,​10\}=4+10=14$),​ thus obviously.+Clearly $\min(e_i, e'_i) +\max(e_i, e'​_i)=e_i+e'​_1$ (for example, $\min\{4,​10\}+\max\{4,​10\}=4+10=14$),​ thus 
 + 
 +$$\gcd(a,​b)\cdot\operatorname{lcm}(a,​b)=a\cdot b.$$
  
 <WRAP nl> <WRAP nl>
 [[modular:​04_euclidean_algorithm]]\\ [[modular:​04_euclidean_algorithm]]\\
 </​WRAP>​ </​WRAP>​
modular/02_gcd.txt · Last modified: 2014/02/01 00:00 by marje