Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
linear_algebra:01_matrices [2014/01/20 11:43]
marje
linear_algebra:01_matrices [2014/12/14 00:03]
jaan fixed spelling typos
Line 82: Line 82:
 <​BOOKMARK:​m_multiplication>​ <​BOOKMARK:​m_multiplication>​
  
-^Operaton ​^Formular ​^Example^+^Operation ​^Formula ​^Example^
 | Sum | $(a_{ij})+(b_{ij})=(a_{ij}+b_{ij})$ | $\begin{pmatrix}\color{blue}{1} & \color{blue}2\\\color{blue}0 &​\color{blue}{-2}\end{pmatrix}+\begin{pmatrix}\color{red}{0} &​\color{red}{-1}\\\color{red}1 & \color{red}2\end{pmatrix}=\begin{pmatrix}\color{blue}1+\color{red}0 & \color{blue}2+\color{red}{(-1)}\\\color{blue}0+\color{red}1 & \color{blue}{-2}+\color{red}2\end{pmatrix}=\begin{pmatrix}1 & 1\\1 & 0 \end{pmatrix}$ | | Sum | $(a_{ij})+(b_{ij})=(a_{ij}+b_{ij})$ | $\begin{pmatrix}\color{blue}{1} & \color{blue}2\\\color{blue}0 &​\color{blue}{-2}\end{pmatrix}+\begin{pmatrix}\color{red}{0} &​\color{red}{-1}\\\color{red}1 & \color{red}2\end{pmatrix}=\begin{pmatrix}\color{blue}1+\color{red}0 & \color{blue}2+\color{red}{(-1)}\\\color{blue}0+\color{red}1 & \color{blue}{-2}+\color{red}2\end{pmatrix}=\begin{pmatrix}1 & 1\\1 & 0 \end{pmatrix}$ |
-| Scalar multiplication | $c\cdot (a_{ij})=(c\cdot a_{ij})$ | $\color{blue}{-1}\cdot\begin{pmatrix}1 & 8 \\5 &-2 \end{pmatrix}=\begin{pmatrix}\color{blue}{-1}\cdot 1 & \color{blue}{-1}\cdot 8 \\\color{blue}{-1}\cdot 5 &​\color{blue}{-1}\cdot (-2)\end{pmatrix}=\begin{pmatrix}-1 & -8 \\-5 &  2 \end{pmatrix}$| +| Scalar multiplication | $c\cdot (a_{ij})=(c\cdot a_{ij})$ | $\color{blue}{-1}\cdot\begin{pmatrix}1 & 8 \\5 &-2 \end{pmatrix}=$ $\begin{pmatrix}\color{blue}{-1}\cdot 1 & \color{blue}{-1}\cdot 8 \\\color{blue}{-1}\cdot 5 &​\color{blue}{-1}\cdot (-2)\end{pmatrix}=\begin{pmatrix}-1 & -8 \\-5 &  2 \end{pmatrix}$| 
-|Matrix multiplication | Let $AB=(c_{ij})$,​ then $c_{ij}=\sum^m_{r=1}a_{ir}b_{rj}$,​\\ where $A=(a_{ij})$ is $n\times m$ matrix and $B=(b_{ij})$ is $m\times p$ matrix. | $\begin{pmatrix}\color{blue}2 & \color{blue}3 & \color{blue}4\\ \color{red}1 & \color{red}0 & \color{red}0\end{pmatrix}\begin{pmatrix}\color{LimeGreen}6&​ \color{Cyan}{10}\\\color{LimeGreen}7 & \color{Cyan}5\\\color{LimeGreen}8 & \color{Cyan}1\end{pmatrix}=\begin{pmatrix}\color{blue}2\cdot \color{LimeGreen}6+\color{blue}3\cdot \color{LimeGreen}7+\color{blue}4\cdot \color{LimeGreen}8 & \color{blue}2\cdot \color{Cyan}{10}+\color{blue}3\cdot \color{Cyan}5+\color{blue}4\cdot \color{Cyan}1\\\color{red}1\cdot \color{LimeGreen}6+\color{red}0\cdot \color{LimeGreen}7+\color{red}0\cdot \color{LimeGreen}8 & \color{red}1\cdot \color{Cyan}{10}+\color{red}0\cdot \color{Cyan}5+\color{red}0\cdot \color{Cyan}1\end{pmatrix}=\begin{pmatrix}65&​ 39\\6 & 10\end{pmatrix}$|+|Matrix multiplication | Let $AB=(c_{ij})$,​ then $c_{ij}=\sum^m_{r=1}a_{ir}b_{rj}$,​\\ where $A=(a_{ij})$ is $n\times m$ matrix and $B=(b_{ij})$ is $m\times p$ matrix. | $\begin{pmatrix}\color{blue}2 & \color{blue}3 & \color{blue}4\\ \color{red}1 & \color{red}0 & \color{red}0\end{pmatrix}\begin{pmatrix}\color{LimeGreen}6&​ \color{Cyan}{10}\\\color{LimeGreen}7 & \color{Cyan}5\\\color{LimeGreen}8 & \color{Cyan}1\end{pmatrix}=$ $\begin{pmatrix}\color{blue}2\cdot \color{LimeGreen}6+\color{blue}3\cdot \color{LimeGreen}7+\color{blue}4\cdot \color{LimeGreen}8 & \color{blue}2\cdot \color{Cyan}{10}+\color{blue}3\cdot \color{Cyan}5+\color{blue}4\cdot \color{Cyan}1\\\color{red}1\cdot \color{LimeGreen}6+\color{red}0\cdot \color{LimeGreen}7+\color{red}0\cdot \color{LimeGreen}8 & \color{red}1\cdot \color{Cyan}{10}+\color{red}0\cdot \color{Cyan}5+\color{red}0\cdot \color{Cyan}1\end{pmatrix}=$ $\begin{pmatrix}65&​ 39\\6 & 10\end{pmatrix}$|
  
 <WRAP important round> <WRAP important round>
Line 139: Line 139:
  
   * $\begin{pmatrix}2 & 10 & 7\\1 & 4 & 3\end{pmatrix}\begin{pmatrix}1 & 6 & 4\\2 & 3 & 1\\2 & 1 &​10\end{pmatrix}$ over $\mathbb{Z_3}$.   * $\begin{pmatrix}2 & 10 & 7\\1 & 4 & 3\end{pmatrix}\begin{pmatrix}1 & 6 & 4\\2 & 3 & 1\\2 & 1 &​10\end{pmatrix}$ over $\mathbb{Z_3}$.
-</​columns>​+</​columns>\\ 
 +</WRAP>
  
 <hidden **Solution**>​ <hidden **Solution**>​
Line 169: Line 170:
 </​code>​ </​code>​
 </​hidden>​\\ </​hidden>​\\
-</​WRAP>​ 
  
  
 Another important operation on matrices is that of taking **the transpose**. It is denoted by placing a $T$ as an exponent on the initial matrix. Another important operation on matrices is that of taking **the transpose**. It is denoted by placing a $T$ as an exponent on the initial matrix.
  
-^Operaton ​^Formular ​^Example^+^Operation ​^Formula ​^Example^
 | Transpose |$(a_{ij})^T=(a_{ji})$ | $\begin{pmatrix}\color{blue}1 & \color{blue}2 & \color{blue}{-6}\\ \color{red}3 & \color{red}5 & \color{red}4\end{pmatrix}^T=\begin{pmatrix}\color{blue}1 & \color{red}3\\ \color{blue}2 & \color{red}5\\ \color{blue}{-6} & \color{red}4\end{pmatrix}$ | | Transpose |$(a_{ij})^T=(a_{ji})$ | $\begin{pmatrix}\color{blue}1 & \color{blue}2 & \color{blue}{-6}\\ \color{red}3 & \color{red}5 & \color{red}4\end{pmatrix}^T=\begin{pmatrix}\color{blue}1 & \color{red}3\\ \color{blue}2 & \color{red}5\\ \color{blue}{-6} & \color{red}4\end{pmatrix}$ |
  
Line 216: Line 216:
  
 Calculate $5\cdot AA^T+\mathbf{b}\mathbf{c}$ by using IPython . Calculate $5\cdot AA^T+\mathbf{b}\mathbf{c}$ by using IPython .
 +</​WRAP>​
  
 <hidden **Solution**>​ <hidden **Solution**>​
Line 233: Line 234:
 </​code>​ </​code>​
  </​hidden>​\\ ​  </​hidden>​\\ ​
-</​WRAP>​ 
  
  
linear_algebra/01_matrices.txt · Last modified: 2014/12/14 00:03 by jaan