Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
limit:limit [2014/01/13 21:02]
marje created
limit:limit [2014/12/12 21:37]
jaan [Some properties of limit]
Line 32: Line 32:
  
 ===== Some properties of limit ===== ===== Some properties of limit =====
 +==== Limits of sum, difference, product and quotient ====
 If $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} g(x)$ exist and are finite, then  If $\lim_{x \to \infty} f(x)$ and $\lim_{x \to \infty} g(x)$ exist and are finite, then 
   * $\lim_{x \to \infty} f(x) + g(x) = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$,   * $\lim_{x \to \infty} f(x) + g(x) = \lim_{x \to \infty} f(x) + \lim_{x \to \infty} g(x)$,
Line 39: Line 39:
   * $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)}$ if $\lim_{x \to \infty} g(x) \neq 0$.   * $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to \infty} f(x)}{\lim_{x \to \infty} g(x)}$ if $\lim_{x \to \infty} g(x) \neq 0$.
  
-For example, to calculate ​$\lim_{x \to \infty} \frac{8x^2 + x}{2x^2 - 1}$ we can express $\lim_{x \to \infty} ​\frac{8x^2 + x}{2x^2 - 1} = \frac{8 + \frac{1}{x}}{2 - \frac{1}{x^2}}$ and then apply the rules above: $\lim_{x \to \infty} \frac{8 + \frac{1}{x}}{2 - \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 8 + \frac{1}{x}}{\lim_{x \to \infty} 2 - \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 8 + \lim_{x \to \infty} \frac{1}{x}}{\lim_{x \to \infty} 2 - \lim_{x \to \infty} \frac{1}{x^2}} = \frac{8 + 0}{2 - 0} = 4$.+<WRAP task> 
 +Compute ​$\lim_{x \to \infty} \frac{8x^2 + x}{2x^2 - 1}$. ++Solution| 
 +We can express $\frac{8x^2 + x}{2x^2 - 1} = \frac{8 + \frac{1}{x}}{2 - \frac{1}{x^2}}$ and then apply the rules above: $\lim_{x \to \infty} \frac{8x^2 + x}{2x^2 - 1} = \lim_{x \to \infty} \frac{8 + \frac{1}{x}}{2 - \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 8 + \frac{1}{x}}{\lim_{x \to \infty} 2 - \frac{1}{x^2}} = \frac{\lim_{x \to \infty} 8 + \lim_{x \to \infty} \frac{1}{x}}{\lim_{x \to \infty} 2 - \lim_{x \to \infty} \frac{1}{x^2}} = \frac{8 + 0}{2 - 0} = 4$.++ 
 +</​WRAP>​
  
 When one of the limits is infinite, one can use the following rules: When one of the limits is infinite, one can use the following rules:
Line 48: Line 51:
   * $q / \infty = 0$ if $q \neq \pm \infty$.   * $q / \infty = 0$ if $q \neq \pm \infty$.
  
-For example, ​$\lim_{x \to \infty} 5 + x = \lim_{x \to \infty} 5 + \lim_{x \to \infty} x = 5 + \infty = \infty$.+<WRAP task>​Compute $\lim_{x \to \infty} 5 + x$. ++Solution| 
 +$\lim_{x \to \infty} 5 + x = \lim_{x \to \infty} 5 + \lim_{x \to \infty} x = 5 + \infty = \infty$.++ 
 +</​WRAP>​
  
 In other cases, like In other cases, like
Line 58: Line 63:
 If $\lim_{x \to \infty} g(x) = 0$ then, as said above, knowing only $\lim_{x \to \infty} f(x)$ is not enough to tell what $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ is. However, the situation is better if we also know the signs of $f(x)$ and $g(x)$. For example, $\lim \frac{x}{e^{-x}} = \frac{\infty}{+0} = \infty$, $\lim \frac{x}{-e^{-x}} = \frac{\infty}{-0} = -\infty$. Here $+0$ and $-0$ denote the facts that $\lim_{x \to \infty} e^{-x} = \lim_{x \to \infty} -e^{-x} = 0$ but $e^{-x}$ converges to $0$ from the positive side (i. e. $e^{-x} > 0$) and $-e^{-x}$ converges to $0$ from the negative side. If $\lim_{x \to \infty} g(x) = 0$ then, as said above, knowing only $\lim_{x \to \infty} f(x)$ is not enough to tell what $\lim_{x \to \infty} \frac{f(x)}{g(x)}$ is. However, the situation is better if we also know the signs of $f(x)$ and $g(x)$. For example, $\lim \frac{x}{e^{-x}} = \frac{\infty}{+0} = \infty$, $\lim \frac{x}{-e^{-x}} = \frac{\infty}{-0} = -\infty$. Here $+0$ and $-0$ denote the facts that $\lim_{x \to \infty} e^{-x} = \lim_{x \to \infty} -e^{-x} = 0$ but $e^{-x}$ converges to $0$ from the positive side (i. e. $e^{-x} > 0$) and $-e^{-x}$ converges to $0$ from the negative side.
  
-Some well-known limits: +==== Some well-known limits ​==== 
-  * $\lim_{x \to \infty} \frac{x^d}{a^{x}} = 0$ for any constants $a > 0, d > 0$. +  * $\lim_{x \to \infty} \frac{x^d}{a^{x}} = 0$ for any constants $a > 1, d > 0$. 
-  * $\lim_{x \to \infty} \frac{x^d}{(\log_a x)^b} = \infty$ for any constants $a > 0, b > 0, d > 0$.+  * $\lim_{x \to \infty} \frac{x^d}{(\log_a x)^b} = \infty$ for any constants $a > 1, b > 0, d > 0$.
  
 ===== Exercises ===== ===== Exercises =====
limit/limit.txt · Last modified: 2014/12/12 21:37 by jaan